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Methods of constructing approximate Compton profiles J(q) are proposed 
and compared, when only the energy E of a system is known. For the q-range 
of interest, the inferential Compton profiles are shown to be of the accuracy 
of the non-variational single STO (Slater-type orbital) description for atoms. 
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1. Introduction 

The Doppler broadening of Compton lines due to moving electrons results in 
the familiar Compton profile which plays a fundamental role in momentum-space 
physics and chemistry, since it is directly related to the momentum distributions 
of electrons in atoms, molecules, and solids (see e.g. Ref. [1]). Under the impulse 
approximation (which assumes the scattering process by single electron with the 
neglect of electron binding energy and the condition of plane wave final electron 
state) [1], the isotropic Compton profile J(q) is related to the radial momentum 
density I(p) through 

J(q) = (1/2) dpp-lI(p), (la) 
ql 

I(p) = -2p[ dJ(p)/ dp], (1 b) 

where I(p) is defined by I(p)=I~ ~ dd)p I2 dOpp a sin OpO(p) based on the three- 
dimensional momentum density p (p). Therefore, various physical properties are 
derived from the Compton profile. For example, several moments of momentum 
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o o  

(pn)[ = ~o dpp"I(p)] are given by [2-5] 

io o (pn) = 2(n + 1) dq qnj(q), (n -> 0) (2a) 

and 

(p-a) = 2J(0), (2b) 

f0 (p-2) = 2 dq q-2[j(0) - J(q)]. (2c) 

{p) is the average momentum and has been reported [6] to have a good correlation 
with the Hartree-Fock exchange energy for atoms. {p2) is just twice the kinetic 
energy T, which is the negative of the total energy E if the virial theorem holds 
in its simplest form T + E  = 0. The second moment (p2) has been also applied 
to the study of interatomic interactions, and the reorganizations in the momentum 
density and the Compton profile have been rigorously connected with the interac- 
tion energy AE and the interatomic force F [7-11]. (p4) appears in the approxi- 
mate relativistic correction to the kinetic energy for the change of the electron 
mass with velocity [12]. 

Recently, Gadre and Sears [13, 14] have studied the inverse problem of estimating 
the Compton profile and its properties from the knowledge of the moments (pn). 
Based on the maximum-entropy principle in information theory (see e.g. Refs. 
[15, 16]), they have constructed approximate Compton profiles and discussed 
the relations between the moments (p") and various Compton profile parameters 
such as the peak height J(0) and the half width qhw defined by 2J(qhw)= J(O). 
The method of maximum-entropy inference has been also applied to the estima- 
tion of the momentum density reorganization during the process of interatomic 
interactions when the interaction energy is known [17]. 

In this paper, we examine alternative methods of constructing approximate 
Compton profiles J(q) based on some functional approximations to the spherical 
average b(r) of the characteristic function B(r)  of the momentum density. The 
functions B(r) and b(r) are defined by 

B(r) = I dp exp (-ip.  r)p(p), (3a) 

Iofo b(r) = (47r) -1 d4) dO sin O B(r), (3b) 

and their properties have been studied in Refs. [18-21]. Since J(q) and b(r) are 
a pair of the Fourier cosine transforms, 

J(q) = (1/~') dr cos (qr)b(r), (4a) 

b(r) = 2 dq cos (rq)J(q), (4b) 

we can obtain inferential J(q) from the approximations to b(r) and vice versa. 
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In the sense of information theory, the more information (or constraints) is given, 
the more the inference becomes reliable. In the following, however, we assume 
that only the second moment (p2) is known in advance. Because ( p 2 ) = - 2 E  for 
atoms and molecules in their equilibrium conformations, the second moment is 
a readily available fundamental physical quantity of atoms and molecules. In the 
next section, three methods of constructing approximate J (q) are shown including 
the maximum-entropy inference. In Sect. 3, the inferential Compton profiles are 
compared and their reliability is discussed. Atomic units are used throughout 
this paper. 

2. Inferential Compton profiles J(q) 

2.1. Maximum-entropy approximation to J(q) 

Since J(q) is an even function under the impulse approximation (see Eq. (la)), 
the normalization condition is 

o~ dq J(q) = S / 2 ,  (5a) 

where N is the number of electrons. The second moment satisfies 

o~dq q2 j(q) _- (p2)/6 (5b) 

from Eq. (2a). As shown by Gadre and Sears [13], the Compton profile J(q) 
which maximizes the information entropy 

f0 $I = -  dq J(q) In [J(q)] (6) 

under the constraints (5a) and (5b) is a normal (or Gaussian) distribution 

J(q) = [3N3/(2~r(p2))] 1/2 exp [-(3N/2(p2))q2]. (7) 

Information-theoretically, this is the most unbiased estimate of J(q) when only 
the information (5) is given [15]. This inferential profile is correct for the l s  
GTO (Gaussian-type orbital). 

2.2. Padd approximation to b(r) 

Instead of the direct estimation of J(q), approximate J(q) can also be derived 
from the estimation of b(r) through Eq. (4a). General relations between b(r) 
and the moments (pn) have been shown in Refs. [20, 21]. The resultant equations 
imply that as far as the moments exist, the coefficients of odd powers of r are 
zero and those of even powers of r are proportional to the moments of the 
corresponding orders when b(r) is expanded in the Maclaurin series. Namely, 
we can write 

b(r) = N -  ((p2)/6)r 2 + O(r4), (8) 
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since the moments (pn) always exist for 0 -  < n-<4. In Eq. (8) the expansion is 
specified up to the third order, and we know b ( r ) ~ O  as r~oe. Then we may 
construct [0/3] and [1/2] Pad6 approximants to b(r) (see e.g. Ref. [22]). In both 
cases, the results are found to be 

b(r) = N / [ 1  + ((p2)/  6N)r2] (9) 

which is also derived from the [0/2] approximant. Using Eq. (4a), we obtain the 
inferential profile 

J (q )  = (3N3/2(p2) )  1/z exp [ - ( 6 N / ( p e ) ) l / 2 q ] .  (10) 

However, this Compton profile has a cusp at the origin and is not physically 
acceptable (see Sect. 3 and Fig. la). By the analogy of Eq. (9), we may alternatively 
assume a function 

b(r) = Cl/(1 + c2r2) m. (11) 

Then it is found that 

Cl = N, c2 = ( p 2 ) / ( 6 m N )  (12) 

from Eq. (8), and 

J (q )  = N21-2m[(m - 1)!]-%21/2 exp ( -c2a/2q)  

m-1  
x ~ [(2m - k -  2) ! (2c21/2q)k] /[k! (m -- k - 1)!] (13) 

k=0 

from Eq. (4a), but the positive integer m remains undetermined. For m --- 2, Eq. 
(13) does not have the incorrect cusp. Interestingly, Eq. (13) monotonically 
converges to the maximum-entropy J(q)  (Eq. (7)) as m approaches infinity. 

2.3. Overlap approximation to b(r) 

An important property of the characteristic function is that it is reduced to the 
overlap integral for one-electron orbitals [18,21]. We can therefore assign 
functions similar to overlap integrals for b(r),  instead of the Pad6 approximants. 

Since four coefficients are given in the expansion (8), we first examine a function 
with four parameters 

b(r) = exp ( - ~ r ) ( a o +  a i r +  a2r 2) (14) 

which imitates the overlap integral between two STO's. Comparison of Eq. (8) 
with the Maclaurin expansion of Eq. (14) gives 

= ((pZ) /N)I /Z ,  ao =N, al ~ -  (N(p2) )  1/2, a2 = (pZ)/3  (15) 

and hence 

J (q )  = (8 /3  7r) (( p2 )S /N  3 ) 1/2(q 2 + (p2)/N)-3. (16) 

This inferential J (q )  is correct for the Is STO. Indeed, Eq. (14) has the same 
form as the overlap integral between the ls STO's. Consequently, Eq. (16) is 
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expected to be a good approximation for He, H2, and their analogs where the 
is character is predominant. 

When we assume a function b(r) = exp (-~r 2) x (polynomial of r) from the analogy 
of the GTO overlaps, the result is identical to the maximum-entropy inference 
(Eq. (7)). 

3. Reliability of inferential J(q) 

In Fig. 1, the inferential Compton profiles, Eqs. (7), (10), (13), and (16), are 
shown and compared with the results from several STO's. All the parameters 
have been so adjusted that N = (pZ) = 1 is satisfied. 

The Pad6 approximation (10) has an incorrect cusp at the origin. The overlap 
approximation (16) emphasizes the distribution around the origin, whereas the 
maximum-entropy distribution (7) emphasizes the profile around q-~0.8 with 
the lowest peak J(0). The approximation (13) shows an intermediate behaviour. 
Though the Compton profiles for atoms must have an asymptotic behaviour of 
q-6 for a large q value [2], the comparison of Figs. la and lb shows that for the 
q-range of interest, the inferential J(q)'s are physically acceptable except for the 
approximation (10). 

Table 1 summarizes several characteristic properties of the inferential Compton 
profiles, which entirely depend on N and (p2). The corresponding properties for 
the STO's are given in Table 2. For single STO's, these results (except for $I) 
are independent of exponents and hence atoms, and constitute general relations. 
As the properties for the STO's vary from one orbital to another, the inferential 
properties given in Table 1 vary depending on the method of estimation. We 
cannot conclude which method is best for the construction of approximate 
Compton profiles. However, some of the inferential properties are quite constant 

o- 
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Fig. la. Inferential Compton profiles, b STO Compton profiles 
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Table 2. Comparison of several properties of the STO Compton profiles J(q) 
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Orbital 

Property a l s  2s 2p 3s 3p 3d 

Y(O)/[N3/Z(p2) -1/2] 0.8488 0.7514 0.6791 0.7636 0.6274 0.6209 
qhw/[N-1/2(p2) l/z] 0.5098 0.6091 0.6763 0.6072 0.7561 0.7567 
$1 b 0.4114 0.4197 0.4296 0.4098 0.4332 0.4320 
(p-2>/[N2(p2}-l] 5.0 3.6667 2.3333 3.72 1.9185 1.8 
(p-1)/[N3/2(p2)-l/2] 1.6977 1.5029 1.3581 1.5271 1.2547 1.2417 
(p}/[N1/Z(p2) 1/2] 0.8488 0.8821 0.9054 0.8677 0.9341 0.9313 
(p3)/[N-1/2(p2)3/2] 1.6977 1.7643 1.3581 1.7353 1.2172 1.2417 
(p4)/[N-l(p2)2] 5.0 9.0 2.3333 5.0 1.7347 1.8 

a N = l .  
b Calculated under the condition of N = (p2> = 1. 

except for the Pad6 approximation with m -- 1. For instance, we see 

(p-'}/[N3/Z(p2) -1/2] ~ 1.S, 

( p} /[ N1/Z( p2) a/2] ~ 0.9, 

(17a) 

(17b) 

in Table 1. The inferential relation (17a) also applies to the ls-3s STO's and the 
relation (17b) applies to all the STO's examined in Table 2. It may be important 
that Eq. (17b) is approximately valid for all kinds of STO's. This supports the 
semi-quantitative reliability of the inference for the intermediate q-range. It also 
suggests that a similar relation holds for the total atomic Compton profile, when 
the independent particle model is assumed. However,  the results for (p-Z), (p3),  

a n d  (p4) are dispersive in both Tables 1 and 2, and reflect the fact that the 
Compton profiles differ considerably in the small and large q-regions depending 
on the methods of inference and the types of orbitals. The energy information 
alone seems to be insufficient for the estimation of the distribution in these 
q-regions. 

On the basis of the knowledge of the energy, semi-quantitative estimates seem 
to be possible for the intermediate q-range, when we consider the Compton 
profile of single STO's. However,  the single STO description is not very accurate 
even for small atoms. For the orbitals represented by the linear combination of 
some basis functions, the properties summarized in Tables 1 and 2 are no longer 
constants but depend greatly on the exponents, coefficients of linear combination, 
and so on. For this reason, the results for actual atoms depend on individual 
atoms and deviate from the values in Tables 1 and 2 as shown in Table 3. Even 
the relations (17) do not hold except for H and He; though Eq. (17b) seems to 
be valid for Li-Ne if the constant 0.9 is replaced with 0.7. 

In summary, the present methods of constructing approximate Compton profiles 
based only on the knowledge of ( p 2 ) = - 2 E  are not satisfactory for actual atoms 



t~
 

T
ab

le
 3

. 
C

o
m

p
ar

is
o

n
 o

f 
se

ve
ra

l 
p

ro
p

er
ti

es
 o

f 
th

e 
at

o
m

ic
 C

o
m

p
to

n
 p

ro
fi

le
s 

j(q
)a

 

A
to

m
 

P
ro

p
er

ty
 

H
(2

S
) 

H
e(

1S
) 

L
i(

2S
) 

B
e(

1S
) 

B
(2

p)
 

C
(3

p)
 

N
(4

p)
 

O
(3

p)
 

F
(2

p)
 

N
e(

1S
) 

N
 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10

 
-E

 b
 

0.
5 

2
.8

6
1

7
 

7
.4

3
2

6
 

14
.5

73
 

2
4

.5
2

9
 

3
7

.6
8

8
 

5
4

.4
0

0
 

7
4

.8
0

8
 

9
9

.4
0

8
 

12
8.

54
 

(p
2)

 
1.

0 
5

.7
2

3
4

 
14

.8
65

 
2

9
.1

4
5

 
4

9
.0

5
5

 
7

5
.3

7
2

 
10

8.
79

 
14

9.
61

 
19

8.
81

 
2

5
7

.0
8

 
(p

 2
)/[

N
2(

p2
)-

l]
 

5.
0 

5.
85

38
 

43
.6

51
 

4
5

.8
9

9
 

31
.8

15
 

24
.5

81
 

2
0

.1
5

8
 

17
.4

51
 

15
.4

58
 

13
.9

71
 

(P
-1

)/[
N

3/
Z(

p2
)-

l/2
] 

1
.6

9
7

7
 

1.
81

08
 

3.
84

41
 

4
.2

6
0

4
 

3.
74

42
 

3
.3

9
8

7
 

3
.1

5
1

2
 

2
.9

9
8

4
 

2.
86

91
 

2.
76

11
 

(p
)/[

N1
/2

(p
2)

 1/
2]

 
0

.8
4

8
8

 
0.

82
73

 
0

.7
3

4
6

 
0

.6
8

8
5

 
0

.6
8

0
0

 
0

.6
8

0
0

 
0

.6
8

3
5

 
0

.6
8

5
7

 
0

.6
8

9
5

 
0

.6
9

4
2

 
(P

3)
/[N

-1
12

(p
2)

3/
2]

 
1.

69
77

 
1.

85
81

 
2

.1
4

3
9

 
2

.3
5

7
5

 
2

.4
9

5
7

 
2

.5
8

7
2

 
2

.6
4

7
9

 
2.

69
81

 
2

.7
2

9
8

 
2

.7
4

8
6

 
(p

4)
/[N

-1
(p

2)
2]

 
5.

0 
6.

35
97

 
8.

23
23

 
9

.9
1

3
7

 
11

.2
38

 
12

.2
58

 
13

.0
37

 
13

.7
13

 
14

.2
12

 
1

4
.6

0
2

 

"A
to

m
ic

 w
av

e 
fu

n
ct

io
n

s 
h

av
e 

b
ee

n
 t

ak
en

 f
ro

m
 R

ef
. 

[2
3]

 f
o

r 
H

e 
an

d
 f

ro
m

 R
ef

. 
[2

4]
 f

o
r 

L
i-

N
e.

 
b 

T
ot

al
 e

n
er

g
y

 E
 

is
 i

nc
lu

de
d 

to
 s

h
o

w
 t

h
e 

ac
cu

ra
cy

 o
f 

th
e 

w
av

e 
fu

n
ct

io
n

 e
m

p
lo

y
ed

. 

7~
 

O
 



Inferential Compton profiles 257 

in a quantitative sense. The present results are of the accuracy of the (non- 
variational) single STO description for atoms. In addition to the knowledge of 
the energy, more information seems to be needed to improve the quantitative 
applicability. 
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